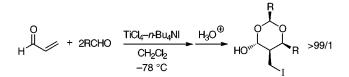
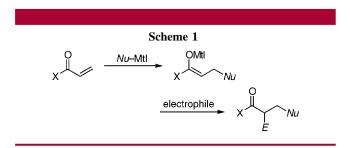
Highly Stereoselective Coupling Reaction of Acrolein or Vinyl Ketone with Aldehydes

ORGANIC LETTERS 1999 Vol. 1, No. 9 1383–1385


Shigeki Uehira, Zhenfu Han, Hiroshi Shinokubo, and Koichiro Oshima*

Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan

oshima@fm1.kuic.kyoto-u.ac.jp


Received August 11, 1999

ABSTRACT

Treatment of acrolein with a TiCl₄–*n*-Bu₄NI mixed reagent in the presence of 2 equiv of aldehydes provided 4-hydroxy-1,3-dioxane derivatives in good yields with high stereoselectivities. The use of vinyl ketones instead of acrolein afforded aldol-type adducts with high syn selectivities.

The conjugate addition reaction of various nucleophiles to α,β -unsaturated compounds such as 1,2-enones has been extensively explored, and it has been recognized as a powerful route for enolate formation.¹ Then, the sequential reaction of the resulting enolate with electrophiles provides organic chemists an extremely effective methodology for construction of the carbon framework of organic molecules (Scheme 1).² With regard to acrolein, however, few examples

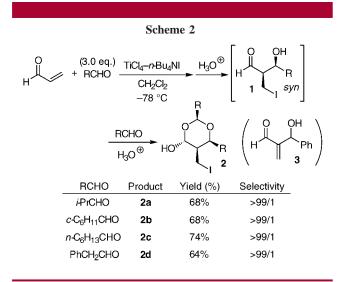
of conjugate addition to acrolein are described in the literature.³ Moreover, trapping of the resulting enolate with carbon electrophiles such as carbonyl compounds has been quite limited. In most cases, 1,2-addition of nucleophiles to acrolein is the predominant reaction. In addition, if 1,4-addition to acrolein occurs, reaction of the resulting enolate with acrolein could readily cause polymerization of acrolein

10.1021/ol990934w CCC: \$18.00 © 1999 American Chemical Society Published on Web 09/30/1999

because of its high reactivity. Herein we wish to report that a $TiCl_4-n$ -Bu₄NI⁴ system mediates formation of an enolate from acrolein and the subsequent trapping of the resulting titanium enolate⁵ with aldehydes affords 3-hydroxy-aldehydes and their derivatives with high stereoselectivities.

Treatment of tetrabutylammonium iodide with $TiCl_4$ in dichloromethane at 0 °C provided a dark-red solution. After

^{(1) (}a) Organocopper Reagents; Taylor, R. J. K., Ed.; Oxford University Press: New York, 1994. (b) Jung, M. E. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press: New York, 1991; Vol. 4, Chapter 1.1, pp 1–67. (c) Lee, V. J. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press: New York, 1991; Vol. 4, Chapter 1.2 pp 69–137. (d) Lee, V. J. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press: New York, 1991; Vol. 4, Chapter 1.3, pp 139–168.

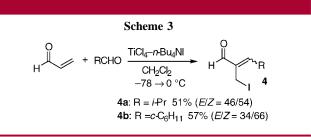

^{(2) (}a) Noyori, R.; Suzuki, M. Angew. Chem., Int. Ed. Engl. 1984, 23, 847–876. (d) Taylor, R. J. K. Synthesis 1985, 364–392. (c) Noyori, R.; Suzuki, M. Chemtracts-Org. Chem. 1990, 3, 173–197. (d) Hulce, M.; Chapdelaine, M. J. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press: New York, 1991; Vol. 4, Chapter 1.6, pp 237–268.

⁽³⁾ Examples of conjugate addition to acrolein: (a) Alexakis, A.; Chuit, C.; Commerçon-Bourgain, M.; Foulon, J. P.; Jarbi, N.; Mangeney, P.; Normant, J. F. *Pure Appl. Chem.* **1984**, *56*, 91–98. (b) Park, Y. S.; Beak, P. J. Org. Chem. **1997**, *62*, 1574–1575.

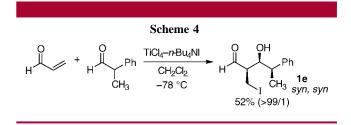
^{(4) (}a) Taniguchi, M.; Hino, T.; Kishi, Y. *Tetrahedron Lett.* **1986**, *39*, 4767. (b) Yachi, K.; Maeda, K.; Shinokubo, H.; Oshima, K. *Tetrahedron Lett.* **1997**, *38*, 5161.

^{(5) (}a) Organotitanium and Organozirconium Reagents; Ferreri, C., Palumbo, G., Caputo, R., Eds.; Pergamon Press: Oxford, 1991; Vol. 1, pp 139–172. (b) Reetz, M. T. Organotitanium Reagents in Organic Synthesis; Springer-Verlag: Berlin, 1986.

being stirred for 10 min, an addition of an excess amount of 2-methylpropanal (3.0 equiv) followed by acrolein (1.0 equiv) at -78 °C afforded a cyclic hemiacetal **2a** in 68% yield (based on the amount of acrolein employed) as a single stereoisomer.^{6,7} This cyclic hemiacetal could be generated from the initial addol adduct **1** and another molecule of 2-methylpropanal (Scheme 2). Interestingly, no polymeri-



zation of acrolein could be observed in this reaction. The use of a reduced amount of 2-methylpropanal (1.0 mmol per 1.0 mmol of acrolein) also resulted in formation of the cyclic hemiacetal **2a** in 32% yield along with a small amount of aldol adduct **1a** (10%).⁸ Therefore, it is desirable to use more than 2 equiv of aldehydes. The reaction with aliphatic aldehydes such as cyclohexanecarbaldehyde, decanal, or dihydrocinnamaldehyde also gave the corresponding cyclic hemiacetal **2** in good yield with high stereoselectivity. On the other hand, the use of benzaldehyde afforded a complex mixture containing a trace amount of **2**. Baylis–Hillman-type adduct **3** could only be isolated in 29% yield. The adduct **3** was presumably formed by elimination of hydrogen iodide from the initial adduct **1**.


In this reaction, the reaction temperature is critical to determine the distribution of the product. Whereas the reaction at -78 °C gave hemiacetal **2** exclusively, warming the reaction mixture to 0 °C prior to quenching with saturated

1384

aqueous ammonium chloride provided the corresponding dehydration products **4** (Scheme 3).

A high level of diastereofacial selectivity was achieved in the reaction of acrolein with 2-phenylpropanal (Scheme 4). The 3-hydroxyaldehyde **1e** was obtained as a single

diastereomer instead of the cyclic hemiacetal 2 due to the steric bulkiness of 2-phenylpropanal. The stereochemical outcome could be explained by the Felkin–Anh model.⁹

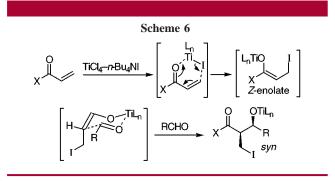
Next, the reaction of vinyl ketone was examined. Treatment of phenyl vinyl ketone with titanium tetrachloride– tetrabutylammonium iodide at -78 °C and subsequent addition of aldehydes also provided the corresponding aldoltype adducts **9** in good yields (Scheme 5).¹⁰ *syn*-3-Hydroxy

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				Scheme	5	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	C R ¹		CH ₂ Cl ₂	NI R ² CHO		
$\begin{array}{c ccccc} Ph & n \mbox{-}09H_{19} & \mbox{9b} & 73\% & >99/1 \\ Ph & CH_3 & \mbox{9c} & 96\% & >99/1 \\ Ph & \mbox{μPr} & \mbox{9d} & 70\% & 89/11 \\ Ph & \mbox{μt_2CH} & \mbox{9e} & 79\% & 96/4 \\ n \mbox{-}05_{5}H_{11} & Ph & \mbox{$9f$} & 75\% & \mbox{$94/6$} \end{array}$		R ¹	R ²	Product	Yield (%)	Selectivity
Ph CH ₃ 9c 96% >99/1 Ph <i>i</i> Pr 9d 70% 89/11 Ph <i>i</i> Pr 9d 70% 89/11 Ph Et₂CH 9e 79% 96/4 <i>n</i> ·C₅H ₁₁ Ph 9f 75% 94/6		Ph	Ph	9a	89%	>99/1
Ph <i>i</i> Pr 9d 70% 89/11 Ph Et ₂ CH 9e 79% 96/4 <i>n</i> -C ₅ H ₁₁ Ph 9f 75% 94/6		Ph	<i>n</i> -C ₉ H ₁₉	9b	73%	>99/1
Ph Et ₂ CH 9e 79% 96/4 <i>n</i> -C ₅ H ₁₁ Ph 9f 75% 94/6		Ph	CH_3	9c	96%	>99/1
<i>n</i> -C ₅ H ₁₁ Ph 9f 75% 94/6		Ph	<i>i</i> Pr	9d	70%	89/11
		Ph	Et ₂ CH	9e	79%	96/4
<i>n</i> -C ₅ H ₁₁ <i>n</i> -C ₆ H ₁₃ 9g 71% 94/6	n-	C_5H_{11}	Ph	9f	75%	94/6
	n-	C ₅ H ₁₁	<i>n</i> -C ₆ H ₁₃	9 g	71%	94/6

ketones 9 were obtained with high stereoselectivities as in the case of acrolein. For instance, an addition of benzalde-

⁽⁶⁾ Experimental procedure is as follows. To a solution of TiCl₄ (2.0 mmol) in CH₂Cl₂ (5 mL) was added a solution of *n*-Bu₄NI (2.0 mmol) in CH₂Cl₂ (3 mL) at 0 °C. After being stirred for 10 min at 0 °C, a resulting dark-red solution was cooled to -78 °C, and 2-methylpropanal (3.0 mmol) and acrolein (1.0 mmol) were added. The mixture was stirred for 30 min at -78 °C, and then the whole mixture was poured into saturated aqueous ammonium chloride. Extractive workup and purification by silica gel column chromatography afforded 4-hydroxy-2,6-diisopropyl-5-iodomethyl-1,3-dioxane (**2a**, 0.22 g) in 68% yield.

⁽⁷⁾ The stereochemical assignment of this aldol adduct was performed as follows. Reduction of **2a** with NaBH₄ followed by *n*-Bu₃SnH provided 2,4-dimethyl-1,3-pentanediol as a single isomer (>99/1). This product was identical with authentic *syn*-diol. The assignment of relative stereochemistry of another isopropyl group was based on NOE experiment. The anomeric stereocenter was assumed taking account of the anomeric effect.


⁽⁸⁾ Some attempts to obtain 3-hydroxyaldehyde 1 as a major product were not successful.

⁽⁹⁾ Cherest, M.; Felkin, H.; Prudent, N. Tetrahedron Lett. 1968, 2199. Anh, N. T. Top. Curr. Chem. 1980, 88, 145.

⁽¹⁰⁾ The reaction of α,β -unsaturated ketone with Et₂AlI has been reported. Itoh, A.; Ozawa, S.; Oshima, K.; Nozaki, H. *Bull. Chem. Soc. Jpn.* **1981**, *54*, 274–278.

hyde or acetaldehyde afforded syn adduct **9a** or **9c** in 89% or 96% yield, respectively.


Selective formation of the syn isomer might be explained as follows (Scheme 6): (1) the selective generation of

Z-enolate from acrolein or phenyl vinyl ketone by the action of the combination of TiCl_4 -*n*-Bu₄NI and (2) aldol addition of (*Z*)-titanium enolate to aldehyde through a rigid sixmembered transition state.

Finally, the cyclic hemiacetal **2** obtained in our reaction turned out to be an useful intermediate in organic synthesis. Reduction by tin hydride of iodine in **2a** provided methyl-substituted acetal **10** in almost quantitative yield (Scheme 7).¹¹ Several groups have developed the synthetic use of the cyclic hemiacetal for construction of stereocontrolled 1,3-diol systems.¹² The cyclic hemiacetal **2** also proved to be a good substrate for further carbon–carbon bond formation reaction. For example, allylation of acetylated cyclic hemiacetal **11** with allyltrimethylsilane in the presence of Lewis

(12) (a) Rychnovsky, S. D.; Powell, N. A. J. Org. Chem. 1997, 62, 6460.
(b) Dahanukar, V. H.; Rychnovsky, S. D. J. Org. Chem. 1996, 61, 8317.
(c) Rychnovsky, S. D.; Skalitzky, D. J. Synlett 1995, 555. (d) Boons, G.-J.; Eveson, R.; Smith, S. Stauch, T. Synlett 1996, 536. (d) Davis, A. P.; Hegarty, S. C. J. Am. Chem. Soc. 1992, 114, 2745. (e) Yoshida, Y.; Hayashi, R.; Sumihara, H.; Tanabe, Y. Tetrahedron Lett. 1997, 38, 8727.

acids afforded tetrasubstituted 1,3-dioxane 12 as a single isomer in good yield that was further deacetalized to 1,3-diol 13 (Scheme 7).¹³

Acknowledgment. This work was supported by a Grantin Aid for Scientific Research on Priority Area (No. 10208208) from the Ministry of Education, Science, Sports, and Culture, Japan.

Supporting Information Available: General procedures and spectral data for compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL990934W

⁽¹¹⁾ Miura, K.; Ichinose, Y.; Nozaki, K.; Fugami, K.; Oshima, K.; Utimoto, K. Bull. Chem. Soc. Jpn. **1989**, 62, 143.

⁽¹³⁾ The use of TiCl₄-Me₃SiOTf mixed reagent¹⁴ as a Lewis acid afforded the best result. The reaction using only TiCl₄ gave a complex mixture containing a small amount of the allylated product, and no reaction occurred in the case of Me₃SiOTf.

⁽¹⁴⁾ Yoshida, Y.; Hayashi, R.; Sumihara, H.; Tanabe, Y. *Tetrahedron Lett.* **1997**, *38*, 8727–8730.